Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves.

نویسندگان

  • Ryo Matsuda
  • Keiko Ohashi-Kaneko
  • Kazuhiro Fujiwara
  • Kenji Kurata
چکیده

Blue light effects on the acclimation of energy partitioning characteristics in PSII and CO2 assimilation capacity in spinach to high growth irradiance were investigated. Plants were grown hydroponically in different light treatments that were a combination of two light qualities and two irradiances,i.e. white light and blue-deficient light at photosynthetic photon flux densities (PPFDs) of 100 and 500 micromol m(-2) s(-1). The CO2 assimilation rate, the quantum efficiency of PSII(PhiPSII) and thermal dissipation activity (F(v)/F(m)-F'(v)/F'(m)) in young, fully expanded leaves were measured under 1,600 micromol m(-2) s(-1) white light. The CO2 assimilation rate and (PhiPSII) were higher, while F(v)/F(m)-F'(v)/F'(m) was lower in plants grown under high irradiance than in plants grown under low irradiance. These responses were observed irrespective of the presence or absence of blue light during growth. The extent of the increase in the CO2 assimilation rate and PhiPSII and the decrease in F(v)/F(m)-F'(v)/F'(m) by high growth irradiance was smaller under blue light-deficient conditions. These results indicate that blue light helps to boost the acclimation responses of energy partitioning in PSII and CO2 assimilation to high irradiance. Similarly, leaf N, Cyt f and Chl contents per unit leaf area increased by high growth irradiance, and the extent of the increment in leaf N, Cyt f and Chl was smaller under blue light-deficient conditions. Regression analysis showed that the differences in energy partitioning in PSIIand CO2 assimilation between plants grown under high white light and high blue-deficient light were closely related to the difference in leaf N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen partitioning in the photosynthetic apparatus of Plantago asiatica leaves grown under different temperature and light conditions: similarities and differences between temperature and light acclimation.

Effects of growth temperature and irradiance on nitrogen partitioning among photosynthetic components were studied. Plantago asiatica was grown under different temperature and light conditions. Growth conditions were regulated such that the Chl a/b ratio in leaves grown at a low temperature with a low irradiance was similar to that in leaves grown at a high temperature with a high irradiance, s...

متن کامل

Isotopically nonstationary C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation

Improving plant productivity is an important aim for metabolic engineering. There are few comprehensive methods that quantitatively describe leaf metabolism, although such information would be valuable for increasing photosynthetic capacity, enhancing biomass production, and rerouting carbon flux toward desirable end products. Isotopically nonstationary metabolic flux analysis (INST-MFA) has be...

متن کامل

Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum

Photosynthetic organisms are able to sense energy imbalances brought about by the overexcitation of photosystem II (PSII) through the redox state of the photosynthetic electron transport chain, estimated as the chlorophyll fluorescence parameter 1-qL, also known as PSII excitation pressure. Plants employ a wide array of photoprotective processes that modulate photosynthesis to correct these ene...

متن کامل

The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance.

The CMSII mutant of Nicotiana sylvestris, which lacks a functional mitochondrial complex I, was used to investigate chloroplast-mitochondria interactions in light acclimation of photosynthetic carbon assimilation. CMSII and wild-type (WT) plants were grown at 80 micromol m(-2) s(-1) photosynthetic active radiation (PAR; 80) and 350 micromol m(-2) s(-1) PAR (350). Carbon assimilation at saturati...

متن کامل

Compensation for PSII photoinactivation by regulated non-photochemical dissipation influences the impact of photoinactivation on electron transport and CO2 assimilation.

The extent to which PSII photoinactivation affects electron transport (PhiPSII) and CO2 assimilation remains controversial, in part because it frequently occurs alongside inactivation of other components of photosynthesis, such as PSI. By manipulating conditions (darkness versus low light) after a high light/low temperature treatment, we examined the influence of different levels of PSII inacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 49 4  شماره 

صفحات  -

تاریخ انتشار 2008